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Abstract
Off-stoichiometric alloys exhibit partial disorder, in the sense that only some
of the sublattices of the stoichiometric ordered alloy become disordered.
This paper puts forward a generalization of the augmented-space recursion
introduced earlier by Saha and Mookerjee (Saha T and Mookerjee A 1997
J. Phys.: Condens. Matter 10 2179) for systems with many atoms per unit cell.

1. Introduction

Binary alloys in stoichiometric compositions invariably exhibit ordered structures at low
temperatures. As we depart from perfect stoichiometric compositions, it is not possible to
populate the lattice in the given compositions so as to produce a perfectly ordered structure.
Take, for example, a B75A25 binary alloy on a fcc lattice. One of the possible stable ordered
phases is the L12 arrangement as shown in figure 1. An example of this is provided by Cu3Au.
In a cubic unit cell the corner is occupied by an A atom, while the three face centres are occupied
by B atoms. Since there are N corners and 3N face centres (N being the total number of unit
cells in the solid) and exactly as many A and B atoms, at this composition the L12 ordered
arrangement exactly populates all the lattice sites. Ordered arrangement becomes impossible
for, say, B70A30. However, the following arrangement becomes possible: since there are now

B  sublattice

A sublattice

Figure 1. The L12 atomic arrangement for 75–25 AB binary alloys on a fcc lattice.
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1.2N A atoms, N of them may occupy the N corners. The 3N face centres may be occupied
randomly by the 2.8N B atoms and 0.2N remaining A atoms. The original A sublattice remains
ordered, while the B sublattice becomes disordered. Since there are on the whole 3N face
centres, the occupation probabilities of the A and B atoms in this sublattice are 0.93̇ and 0.06̇
respectively. This arrangement is quite different from that of the completely random alloy,
where all sites are randomly occupied by either the A or B atoms with probabilities 0.3 and
0.7 respectively. It is also rather different from the partial disorder defined by [9]. In this
communication we shall define partial disorder in the manner described above.

The recursion method was introduced by [6, 7] as a convenient and numerically efficient
method for calculating Green functions and real physical properties like the local density
of states (LDOS), the Fermi energy and the band energy. The method comes into its own in
situations where translation symmetry of the potential in an effective one-electron Hamiltonian
is lost. The Bloch theorem is violated, and we cannot employ the standard reciprocal-
space techniques unless we apply a homogeneity-restoring mean-field approximation (like
the coherent potential approximation, CPA). This can happen, for instance, at a surface or in
a random alloy. In particular, if the ion cores sit on a topologically distorted network or at a
rough surface or interface, the recursion method seems the only natural way of dealing with
electronic property calculations.

There exists a large body of literature on the application of the recursion method to
various situations [8]. For substitutional disorder, the recursion method has been employed in
tandem with the augmented-space formalism [10–14] (augmented-space recursion or ASR) for
dealing with random alloys, taking into account local configuration fluctuations like chemical
clustering, local lattice distortions due to size effects and inhomogeneous randomness at a
surface caused by surface segregation. In spite of this extensive body of literature, the recursion
method does not seem to have gained wide acceptability in the electronic structure community,
and one often has had to face scepticism regarding its accuracy and feasibility when applying
it with sophisticated electronic structure techniques to realistic systems.

In this communication we shall first present the ASR in detail for the most general case of
systems with many atoms per unit cell. Our subsequent aim will be to study partially disordered
systems in alloys with off-stoichiometric compositions. Then we shall apply it to a toy model
for partial disorder before carrying on to address realistic systems.

2. Generalized augmented-space recursion within the TB-LMTO formalism

In earlier works [12–14] it has been established that for a disordered system the augmented-
space theorem maps a disordered Hamiltonian described in a Hilbert space H onto an ordered
Hamiltonian in an enlarged space �, where the space � is constructed by augmenting the
configuration space � of the random variables of the disordered Hamiltonian together with
the Hilbert space H of the disordered Hamiltonian. Thus � = � ⊗ H . The configuration
averaging of the Green function reduces to the evaluation of a particular matrix element of
the resolvent of this enlarged Hamiltonian in the augmented space. Hence, if one performs a
recursion in the augmented space, one can obtain the matrix element necessary to calculate
the configuration average of a Green function directly. The advantage of this method is that
it does not involve a single-site approximation or the solution of any self-consistent equation
(which is a prerequisite for the CPA and its generalizations). Furthermore, one can treat both
diagonal and off-diagonal disorder on an equal footing.

As mentioned earlier, since the recursion method needs a localized, short-ranged basis
for its operation, one can implement augmented-space recursion in the framework of the
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TB-LMTO formalism. We now describe the methodology of generalized augmented-space
recursion in the framework of the TB-LMTO formalism.

The second-order TB-LMTO Hamiltonian is written in terms of potential parameters and
the screened structure matrix. For a random binary alloy AxBy , the LMTO Hamiltonian in the
most localized representation is given by

H(2) = Eν + h− hoh (1)

where

h =
∑
RLα

(C̃RLα − ẼRLα)PRLα +
∑
RLα

∑
R′L′α′

∆̃1/2
RLαSRLα,R′L′α′∆̃1/2

R′L′α′TRLα,R′L′α′ . (2)

C, o and ∆ are potential parameters of the TB-LMTO method; these are diagonal matrices in
the angular momentum indices. Also o−1 has the dimension of energy and is a measure of the
energy window around Ẽ within which the approximate Hamiltonian H(2) is reliable. Also,

C̃RLα = CA
Ln

α
R + CB

L (1 − nαR) = CB
L + δCL n

α
R

δCL = CA
L − CB

L

∆̃1/2
RLα = (�A

L)
1/2nαR + (�B

L)
1/2(1 − nαR) = (�B

L)
1/2 + δ�1/2

L nαR

δ�
1/2
L = (�A

L)
1/2 − (�B

L)
1/2

õRLα = oALn
α
R + oBL(1 − nαR) = oBL + δoL n

α
R

δoL = oAL − oBL

ẼνRLα = EA
νLαn

α
R + EB

νLα(1 − nαR) = EB
νLα − δEνLα n

α
R

δEνLα = EA
νLα − EB

νLα.

R denotes a cell position label associated with a TB-LMTO basis and L = (�mms) is the
composite angular momentum index. α denotes an atom in the Rth cell whose position
is R + ξα . nαR is the site-occupation variable which takes values 0 or 1 depending upon
whether site α in the Rth cell is occupied by an A or a B atom. For partial disorder, this
is a random variable whose probability density depends upon which sublattice it belongs to;
hence the label α associated with it. The structure matrix SRLα,R′L′α′ is non-random in the
case of substitutional alloys with negligible size mismatch. Now one can obtain the full H2

by inserting h in expression (1).
PRLα and TRLα,R′L′α′ are the projection and transfer operators in Hilbert space H spanned

by the tight-binding basis {|RLα〉}.
The expanded Hamiltonian Ĥ in the augmented space is constructed by replacing the

random site-occupation variable nαR by its corresponding operator representation Mα
R in

configuration space, where Mα
R is given by

Mα
R = xαAP↑

Rα + xαBP↓
Rα +

√
(xαAx

α
B)(T ↑↓

Rα + T ↓↑
Rα ).

In the presence of off-diagonal disorder, which is invariably present in the form of the TB-
LMTO Hamiltonian, even reduction of the rank of the invariant subspace on which recursion
acts, using the symmetries of the augmented space, does not allow us to sample as many
configuration states as we would like. This is because, as recursion proceeds, the number of
configuration states sampled at the nth step of recursion becomes unmanageably large when
n > 5 (for example). To do away with this problem, the working equations are transformed so
as to put the Hamiltonian for the recursion in an effective diagonal disorder form. This allows
one to sample further shells in augmented space and to confirm the shell convergence of the
recursion.
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To do this, we first suppress all the indices and write the expression for the resolvent as
follows:

(E − H(2))−1 = (E − C̃ − ∆̃1/2S∆̃1/2 + hõh)−1

= ∆̃1/2

[
E − C̃

∆̃
− S +

(
C̃ − Ẽν

∆̃
+ S

)
(∆̃1/2õ∆̃1/2)

(
C̃ − Ẽν

∆̃
+ S

)]−1

∆̃1/2.

Using the augmented-space theorem, we can write the expression for the configuration-
averaged Green function as

〈〈GRLα,RLα(E)〉〉 = 〈1|
[
Ê − Â + B̂ + F̂ − Ŝ + (Ĵ + Ŝ)ô(Ĵ + Ŝ)

]−1
|1〉

where

|1〉 =
{

Aα
L(�

−1/2)[
Aα
L(1/�)

]1/2

}
|R,L, α ⊗ {∅}〉 +

{
Fα
L (�

−1/2)[
Aα
L(1/�)

]1/2

}
|R,L, α ⊗ {R}〉

and

Â =
∑
R,L,α

{
Aα
L(C/�)

Aα
L(1/�)

}
PR,α ⊗ PL ⊗ I

B̂ =
∑
R,L,α

{
Bα
L((E − C)/�)

Aα
L(1/�)

}
PR,α ⊗ PL ⊗ P↓

Rα

F̂ =
∑
R,L,α

{
Fα
L ((E − C)/�)

Aα
L(1/�)

}
PR,α ⊗ PL ⊗ (T ↑↓

Rα + T ↓↑
Rα )

Ŝ =
∑
RLα

∑
R′L′α′

{
Aα
L(1/�)

−1/2
}
SRLα,R′L′α′

{
Aα
L(1/�)

−1/2
} TRα,R′α′ ⊗ TLL′ ⊗ I.

Here, Ĵ = ĴA + ĴB + ĴF and ô = ôA + ôB + ôF , where

ĴA =
∑
R,L,α

{
Aα
L((C − Eν)/�)

Aα
L(1/�)

}
PR,α ⊗ PL ⊗ I

ĴB =
∑
R,L,α

{
Bα
L((C − Eν)/�)

Aα
L(1/�)

}
PR,α ⊗ PL ⊗ P↓

Rα

ĴF =
∑
R,L,α

{
Fα
L ((C − Eν)/�)

Aα
L(1/�)

}
PR,α ⊗ PL ⊗ (T ↑↓

Rα + T ↓↑
Rα )

ôA =
∑
R,L,α

{
Aα
L(õ)A

α
L(1/�)

} PR,α ⊗ PL ⊗ I

ôB =
∑
R,L,α

{
Bα
L(õ)A

α
L(1/�)

} PR,α ⊗ PL ⊗ P↓
Rα

ôF =
∑
R,L,α

{
Fα
L (õ)A

α
L(1/�)

} PR,α ⊗ PL(T ↑↓
Rα + T ↓↑

Rα )

where

Aα
L(Z) = xαAZ

A
L + xαBZ

B
L

Bα
L(Z) = (xαB − xαA)(Z

A
L − ZB

L)

Fα
L (Z) = √

xαAx
α
B(Z

A
L − ZB

L).

Z is any single-site parameter.
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Though the computational burden is considerably reduced due to the diagonal formulation,
the recursion now becomes energy dependent as is clear from the expressions for B̂ and F̂
above. The old formalism was free of this constraint. This energy dependence makes the
recursion technique rather unsuitable, because now we have to carry out one recursion per
energy point of interest. This problem is tackled using the seed recursion technique [4]. The
idea is to choose a few seed points across the energy spectrum uniformly, carry out recursion
on those points and then fit the coefficients of recursion throughout the whole spectrum. In
this way one can save hugely on computation time. For example, if one is interested in an
energy spectrum of 100 points, in the bare diagonal formulation recursion has to be carried out
at all the 100 points but in the seed recursion technique one needs to perform recursions only at
15–20 points. The whole idea stems from the fact that in most of the cases of binary alloys, it
is seen that the recursion coefficients αn and βn vary quite weakly across the energy spectrum.
So, one can easily pick up a few of them and fit throughout the whole range of energy using a
suitable function.

3. Calculations on a model system

Before we carry out calculations on a real alloy, let us first apply our formalism to a toy model
in order to achieve an understanding of the effects of partial disordering. We shall consider a
50–50 AB alloy ordered first on a square lattice as shown in figure 2 and only s states on this
atomic arrangement. The Hamiltonian in a tight-binding basis set is then

H =
∑
i

εiα,iα′Piα,iα′ +
∑
{ij}

tiα,jα′Tiα,jα′

where {ij} denotes that i and j are nearest-neighbour cells on the lattice; α is 1 or 2 according
to whether we are referring to the corner atoms or central atoms in a square unit cell (dark and
light atoms in figure 2). If we consider only the nearest-neighbour overlaps at a distance a/

√
2

where a is the square-lattice constant, the diagonal and off-diagonal terms of the Hamiltonian
are (referring to figure 3)

εiα,jα′ =
(
ε t

t ε

)

tiα,jα′ =
(

0 0
t 0

)
ri and rj are in the (10) and (01) directions

tiα,jα′ =
(

0 t

0 0

)
ri and rj are in the (10) and (01) directions.

t=1   nearest neighbour  at  ~  0.7 a

t << 1  next nearest neighbour  at   a 

Figure 2. The ordered atomic arrangement on a square
lattice for A50B50 alloys.

Figure 3. Nearest-neighbour overlaps for a central cell
in a square lattice with lattice constant of a units.
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The ordered lattice has a density of states which has a central band gap with integrable
infinite Van Hove singularities at the two internal band edges, two kink singularities within
the band and the usual square-root singularities at the external band edges. As expected, the
density of states is symmetric about the band centre ε̄ = 0.5. This is shown in figure 4.
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Figure 4. The density of states for the perfectly ordered lattice.

The density of states for the perfectly disordered lattice, where each lattice site is occupied
by either an A or a B atom with probabilities proportional to their concentrations, is shown in
figure 5. Disorder washes away the Van Hove singularities and the central band gap is filled up.
The results are identical to those for a disordered square lattice with lattice vectors (a/

√
2, 0)

and (0, a/
√

2).
The next figure, figure 6, shows the density of states and Fermi energies for the partially

disordered half-filled alloys at just off-stoichiometric compositions (49.5–50.5) and (50.5–
49.5). Disorder washes out the Van Hove singularities, although vestiges of the kink
singularities remain. The signature of the internal infinite singularities shows up as peaks,
but disorder fills up the internal band gap. The band-edge square-root singularities remain
as artifacts of the termination procedure. Loss of stoichiometry weights the two ‘bands’
differently, leading to a loss of symmetry about the band centre.

Figure 7 shows the band energy for the partially ordered alloys. There is a jump at the
stoichiometric composition with the band energy for the ordered alloy falling halfway between
the two branches. This jump can be understood by carefully examining the graphs in the left-
hand and right-hand regions of figure 7. The band energy represents the average energy (centre
of gravity) of the portion of the graph to the left of the Fermi energy. The density of states
in the left-hand region has greater weight below the Fermi energy as compared to that in the
right-hand region, ensuring that the band energy is more negative for the compositions shown
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Figure 5. Partial densities of states (states/(energy cell)) for the A and B atoms (top, bottom) for a
completely disordered alloy at different off-stoichiometric compositions.
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Figure 6. The density of states (states/(energy cell)) for a partially disordered alloy, at different
off-stoichiometric compositions.
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Figure 7. Band energies for the partially ordered, fully ordered and fully disordered alloys at
stoichiometric (50–50) and nearby off-stoichiometric compositions.

in the left-hand region. The sudden jump is the result of the Fermi energy shifting across the
pseudo-band gap as we cross the 50–50 composition and including the high peak at E = 0,
which shifts the average energy to higher values. The specific behaviour of the band energy
depends sensitively on the features of the density of states. The specific behaviour for our toy
model may not obtain for realistic alloy systems.

In contrast, the behaviour of the band energy with composition for the fully disordered
alloy is smooth, reflecting the smooth behaviour of the density of states without any internal
band gaps. The figure indicates that for compositions to the left of the 50–50 stoichiometric
one, the alloy prefers to be partially ordered. At 50–50 the ordered alloy is stable for our
toy model, while for compositions to the right of 50–50 the alloy stabilizes in the completely
disordered phase.

4. Remarks and conclusions

In this communication we first proposed a generalization of the ASR for partially ordered
binary alloy systems. Partial ordering of the type where disorders in different sublattices are
different has been studied in particular. Finally, we studied a model system, in order to achieve
an understanding of the effects of partial disordering. We are now in a position to apply our
formalism to realistic alloy systems. This will be the subject of a future communication.
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